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Abstract
We introduce new entanglement monotones which generalize, to the case
of many parties, those which give rise to the majorization-based partial
ordering of bipartite states’ entanglement. We give some examples of
restrictions they impose on deterministic and probabilistic conversion between
multipartite states via local actions and classical communication. These
include restrictions which do not follow from any bipartite considerations.
We derive supermultiplicativity relations between each state’s monotones and
the monotones for collective processing when the parties share several states.
We also investigate polynomial invariants under local unitary transformations,
and show that a large class of these are invariant under collective unitary
processing and also multiplicative, putting restrictions, for example, on the
exact conversion of multiple copies of one state to multiple copies of another.

PACS numbers: 03.65.Ud, 03.65.Ta, 03.67-a

1. Introduction

A key goal of quantum information theory is to understand the local inter-convertibility of
quantum states. That is, given two states, |ψ1〉 and |ψ2〉, we wish to find conditions on |ψ1〉
and |ψ2〉 for one to be converted into the other by local transformations. Understanding this
issue is part of the more general question of characterizing what the truly different types of
entangled quantum states are.

While much is known about the entanglement of bipartite quantum states, multipartite
entanglement appears to have a considerably more complex structure. Many aspects of
bipartite entanglement have been fully understood in terms of a relation known as majorization.
This relation gives necessary and sufficient conditions for turning one pure state into
another via local operations and classical communication and, when extended to mixed
states via a standard ‘concave roof’ construction, gives necessary and sufficient conditions
for converting pure bipartite states into mixed ones or ensembles of mixed ones, and
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necessary conditions for general mixed-state conversion. Motivated in part by the importance
of multipartite entanglement to quantum computation, in this paper we generalize these
monotones to multipartite systems, implying necessary conditions on multiparty LOCC state
transformations.

We also investigate aspects of polynomial invariants under local unitary transformations, in
particular their relevance to collective processing by the relevant parties of several multipartite
states at once.

2. Background: invariants and monotones

A state is entangled if it cannot be prepared by initially independent parties (each acting on
one of the subsystems, or, as we say, acting locally), even if these parties may communicate
classically. (We use the standard acronym LOCC for ‘local operations and classical
communication’.) More generally, we may say one state is more entangled than another if it
cannot be prepared from the second state via LOCC. Two states are equivalent to one another, in
terms of entanglement, if the two states may be reversibly interconverted by LOCC. One might
wonder if there exists a single measure of entanglement: a function from states to the reals,
such that a state may be converted, by LOCC, into any state with an equal or lower value of the
function, but not to any state with a higher value of the function. The answer is no: no single
measure of entanglement exists. There are, however, many functions with the property that no
state may be converted to a state with a higher value of the function—Vidal [1] has dubbed these
entanglement monotones. Convertibility via LOCC is obviously a partial order on the entangled
states; any proposed measure of entanglement must be compatible with this partial ordering.
In particular, such a monotone must be an invariant under local unitary transformations of the
state. The theory of polynomial invariants3 under actions of a group is particularly interesting,
and although such invariants are not (at least not prima facie) guaranteed to be entanglement
monotones, the close connection between local unitary invariance and entanglement, and
the mathematical importance of polynomial invariants, suggest that much may be learned
about entanglement by studying the equivalence classes of states having fixed values of the
polynomial invariants [2]. For example, any bipartite entanglement monotone must be, on
pure states |ψ12〉, a function solely of the eigenvalues λi of the reduced density operator
ρ := tr2 |ψ12〉〈ψ12|, these being invariant under local unitaries. And these eigenvalues may
be recovered as the solutions of the system of d polynomial equations in the variables λi ,
i = 1, . . . , d:

d∑
i=1

λk
i = Xk k = 1, . . . , d (1)

where Xk := tr ρk are d polynomial invariants, each homogeneous of degree k.
Some of the polynomial invariants are themselves entanglement monotones. In fact, the

d polynomial invariants just defined are increasing entanglement monotones: they increase
or stay constant under LOCC. This may be proved using example II.3.5(iii) in [3]. These
are not, however, complete (by complete, we mean that their nondecrease is a necessary
and sufficient condition for pure-state to pure-state transitions with certainty). To see this,
consider for example states |ψ1〉 with reduced density matrix eigenvalues 0.5, 0.3, 0.2, and
|ψ2〉 with reduced density matrix eigenvalues 0.51, 0.28, 0.21. These have (X1, X2, X3) =
(1, 0.38, 0.16) and (1, 0.3826, 0.163 864), respectively, so these invariants are nondecreasing
as |ψ1〉 → |ψ2〉. This is necessary for |ψ1〉 → |ψ2〉 with certainty via LOCC, and if it were

3 That is, polynomial functions of the quantum state.
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sufficient, that transition would be possible. However, the vector (0.51, 0.28, 0.21) does not
majorize (0.5, 0.3, 0.2), and this majorization is known to be necessary (cf below) for the
transition in question.

Also, the elementary symmetric polynomials Sk in the eigenvalues of the reduced density
matrix, as well as the ratios Sk/Sk−1 of them, are (increasing) entanglement monotones (the
proof uses example II.3.16 and exercise II.3.19 in [3]).

In quantum mechanics any measure of how mixed a density operator is can be converted
into a candidate measure of how entangled a pure bipartite state is. The mixedness of the
reduced density operator might be thought to measure the entanglement of the state. For
example, the reduced density matrix entropy is one common measure [4]; another is the trace
of the square of the reduced density matrix. Alberti and Uhlmann [5], as well as Wehrl [6, 7]
and others, have extensively studied a partial ordering � of density matrices: ρ � σ , means
‘ρ is more mixed than σ ’, if ρ is a convex combination of unitary transforms of σ :

ρ =
∑

i

piUiσU
†
i . (2)

This can be shown to be equivalent to the statement that the vector λ(ρ), whose components
are ρ’s eigenvalues arranged in decreasing order, is majorized by the vector of σ ’s decreasingly
ordered eigenvalues. An important fact about majorization is that, if a vector λ majorizes a
vector µ, µ may be obtained by multiplying λ by a doubly stochastic matrix (one whose rows
and columns sum to unity). Birkhoff and von Neumann showed that any doubly stochastic
matrix is a convex combination of permutation matrices.

It is therefore natural to require that any reasonable measure of entanglement be compatible
with the partial ordering ‘�’ on pure states, defined by

|ψ12〉 � |φ12〉 := ρ1
ψ � ρ1

φ. (3)

(Here ρ1
ψ and ρ1

φ are the reduced density matrices of the states.) Any reasonable measure of
entanglement should also satisfy that it does not increase under LOCC. If all such measures
must be compatible with the above partial ordering, then it must be impossible, by LOCC, to go
from one pure bipartite state to another more entangled than it is according to the ordering (3).
Indeed, since the ordering (2) appears to be the whole story about whether one density operator
is more mixed than another, it was also natural to conjecture that the ordering (3) is the full
story with respect to whether one pure bipartite state is more entangled than another. In
operational terms, this means that the condition |ψ12〉 � |φ12〉 is not only necessary, but also
sufficient for converting the |ψ12〉 to |φ12〉 by LOCC, and that there should be a protocol to do
this conversion by making use of the Birkhoff–von Neumann decomposition in some simple
way. This conjecture was proved by Nielsen [8]. While Nielsen’s protocol and Hardy’s [9]
version of it are clearly closely related to the Birkhoff–von Neumann decomposition, Jensen
and Schack’s version [10] uses it most directly.

Nielsen’s result implies that, for pure states on the tensor product Cd⊗Cd , the d quantities:

Ek(|ψ12〉) :=
k∑

i=1

λ
↓
i (ρ

1) (4)

are entanglement monotones. For these quantities cannot decrease under LOCC.
The term entanglement monotone is sometimes reserved for quantities which cannot

increase under LOCC; here we allow either nonincreasing, or nondecreasing, monotones; they
are equally useful, as it is trivial to obtain one of one type from one of the other. For convenience,
we will call a monotone which cannot decrease under LOCC an increasing entanglement
monotone, and one which cannot increase under LOCC a decreasing entanglement monotone.
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In the remainder of this paper, we will investigate some generalizations of the majorization-
derived monotones, and of some polynomial invariants under local unitaries, to multipartite
systems. In particular, we will examine multiplicativity of such quantities when a given
set of parties has several, independent, shared states upon which they may operate.
While the generalizations of the majorization monotones will be supermultiplicative (their
multiplicativity remaining an open question), some cases for which multiplicativity holds will
be investigated. A large class of the polynomial invariants will, on the other hand, be shown
to be multiplicative. Multiplicativity is an important property in investigating transformations
between many copies of a given state, both for a finite number of copies and in the asymptotic
limit in which the rate of conversion of multiple copies of one state into another is of interest.

3. Multipartite monotones

3.1. Definition of the monotones

How might we generalize the majorization-derived monotones to multipartite systems? There
is a well known variational characterization [11] of the sums �k of the k largest eigenvalues of
an operator as �k(ρ) = maxrank-k projectors P tr Pρ. We may use this to characterize the bipartite
quantities Ek by

Ek(|ψ12〉) ≡ max
rank-k projectors P

||I ⊗ P |ψ12〉||2. (5)

We propose to generalize this definition of the bipartite quantities to multipartite systems, in
the following way.

Definition 1. For an N -partite quantum system in a (not necessarily normalized) pure state
|ψ123...N 〉, define

Ek1,k2,...,kN
(|ψ123...N 〉) := max

�1,...,�N

||�1 ⊗ · · ·�N |ψ123...N 〉||2 (6)

where each of �i is a ki-dimensional projector in system i.

This is the squared norm of the maximal projection of the state onto a tensor product of
local subspaces having dimensions k1, . . . , kN . The integers ki may range from 1 to di , the
dimension of the ith party’s Hilbert space. To reduce clutter we will sometimes write the
‘multi-index’ k for k1, . . . , kN . For every Ek, its maximal value on the set of pure states with
squared norm equal to X is just X; thus the maximal value for normalized states is 1, and is
attained on pure product states. Note that some non-product states may also have Ek = 1 for
some k. However, only product states can have E111...1 = 1.

Observation 2. Ek1,...,kN
(|ψ1,...,N 〉) are invariant under local unitary transformations of

|ψ1,...,N 〉).
This is immediate from (6). Explicitly

Ek1,...,kN
(U1 ⊗ · · · ⊗ UN |ψ123...N 〉)

= max
�1,...,�N

〈ψ123...N |U †
1 ⊗ · · · ⊗ U

†
N(�1 ⊗ · · ·�N)U1 ⊗ · · · ⊗ UN |ψ123...N 〉

= max
�1,...,�N

〈ψ123...N |(U †
1 �1U1 ⊗ · · · ⊗ U

†
N�NUN)|ψ123...N 〉. (7)

For any set of �i and initial state |ψ〉 the same value of the maximand will be achieved with
the local unitarily transformed state and the projectors transformed by the inverse; these are
also projectors of the same rank, so the maximum over all local projectors is the same for both
initial states.
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One might consider the analogous definition, but with �i replaced by rank-ki partial
isometries. A rank-k partial isometry may be written as �U , where U is unitary and � is a
rank-k projector. Therefore this would define the same quantities, by the same argument just
used for unitary invariance. Explicitly, this definition would be

Ẽk1,k2,...,kN
:= max

R1,...,RN

||R1 ⊗ · · ·RN |ψ123...N 〉||2 (8)

where Ri are partial isometries with ranks ki .
We extend these monotones to mixed states via the usual ‘concave roof’ device of defining

the mixed state quantity to be the maximum of the average of the pure state quantity, over
ensembles of pure states for the mixed state in question:

Ek1,...,kN
(ρ) := max

{|ψi 〉}i :
∑

i |ψi 〉〈ψi |=ρ

∑
i

Ek1,...,kN
(|ψi〉). (9)

For normalized mixed states, the maximum of Ek is achieved at separable states, with Ek = 1.
Again, while some entangled states may have some Ek = 1, only separable states can have
E111...11 = 1.

Extend each monotone Ek to ensembles {pi, ρi}i of states via Ek({pi, ρi}i ) :=∑
i piEk(ρi). Note that the monotones are linearly homogeneous in the density operators:

Ek(λρ) = λEk(ρ). (10)

This has the consequence that we may represent an ensemble {pi, ρi}i by the subnormalized
operators ρ̃i , with tr ρ̃i = pi , and then the ensemble average of the monotone is just

∑
i Ek(ρ̃i).

This representation of ensembles by sequences of unnormalized density operators is useful
because the arguments we use will often involve successively finegraining an ensemble,
in which case it is slightly cumbersome to renormalize and keep track of the probabilities
introduced at each step.

Throughout the paper we use a notation in which sets or ensembles may be referred to by
expressions with curly braces around them, such as {|ψij 〉}i . Some indices in the expression
within braces (i, in our example) also appear as subscripts of the right-hand brace: this indicates
that the set consists of all the values taken by the expression within the braces as these indices
vary. If there are also ‘free’ indices (like j in our example) in the expression within the braces,
which do not appear as subscripts of the right-hand brace, the overall expression including
braces and subscripts ranges over different sets or ensembles as these free indices vary. Thus
{|ψij 〉}i refers to the j th ensemble of some set of ensembles indexed by j . Each of these
ensembles consists of the states |ψij 〉 for all values of i. When we view this as an ensemble,
we take the probability for each state to be given by its squared norm |||ψij 〉||2. The point of
this notation is just to make it clear, when we are considering many ensembles at once, which
indices identify the ensemble, and which identify the states within each ensemble. (A similar
notation is sometimes used by mathematicians to specify matrices by their matrix elements or
tensors by their components, to distinguish indices specifying which component of a tensor
from indices specifying which tensor.)

The following observation partly explains the terminology ‘concave roof’.

Observation 3 (Concave roofs are concave). Let

R(ρ) := max
{|ψi 〉}i :

∑
i |ψi 〉〈ψi |=ρ

∑
i

Q(|ψi〉). (11)

Then R(ρ) is concave in ρ, i.e.
∑
k

R(ρk) � R

( ∑
k

ρk

)
. (12)
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Proof. Define Q on pure-state ensembles by Q({|ψi〉}i ) := ∑
i Q(|ψi〉). We do the

case k ∈ {1, 2}; the general case follows by a trivial induction or by the same proof with
wider-ranging indices. Consider states ρ1, ρ2, and pure-state ensembles ϒ1 = {|ψ1

i 〉}i and
ϒ2 = {|ψ2

i 〉}i for ρ1, ρ2, respectively. The ensemble made from the states of both ensembles,
ϒ := {|ψk

i 〉}k,i , is a pure-state ensemble for ρ1 + ρ2. Now, Q(ϒ) = Q(ϒ1) + Q(ϒ2) from the
definition, so if ϒ1 and ϒ2 achieve the maximum in (11), then Q(ϒ) := R(ρ1) + R(ρ2). But
as ϒ is a pure-state ensemble for ρ := ρ1 + ρ2, by (11) R(ρ) cannot be less than Q(ϒ). �

To help the reader get used to our notation for ensembles, using unnormalized states,
we record for comparison the more standard way of writing concavity, with ensembles of
normalized states and explicit probabilities:

∑
i

piR(ρ̂i) � R

( ∑
i

pi ρ̂i

)
. (13)

It follows from observation 3 that Ek1,...,kN
are concave. Ek1,...,kN

are candidates for
(increasing) multipartite entanglement monotones. They generalize the bipartite case.

Proposition 4. For a bipartite system, pure states |ψ12〉 satisfy

Ek1,k2(|ψ12〉) = Ek2,k1(|ψ12〉) =
min(k1,k2)∑

i=1

λi(ρ1). (14)

(Recall that λi(ρ) is the ith decreasingly ordered eigenvalue of ρ.) The proof makes interesting
use of some tools which are useful in many places in quantum information theory; to avoid
interrupting the flow of our exposition, it appears in an appendix.

3.2. Demonstrating monotonicity

Vidal [12] gave succinct necessary and sufficient conditions for a quantity to be an increasing
entanglement monotone. Such a quantity must be concave, and increasing under unilocal
operations. Concavity means that if we throw away information about which state of the
ensemble we have, the expected entanglement decreases (the monotone increases):

M({|ψij 〉}ij ) �
∑

i

M

({ ∑
j

|ψij 〉〈ψij |
}
i

)
. (15)

Increase under unilocal operations means that under any set of quantum operations Am on one
subsystem which sum to a trace-nonincreasing operation A = ∑

m Am, we have

M(ρ) �
∑
m

M(Am(ρ)). (16)

(Each of the Am is assumed to act nontrivially on the same party’s subsystem, and only on that
subsystem.) We have already shown, in observation 3, that Ek1,...,kN

are concave. They are
also increasing under unilocal operations:

Proposition 5. Ek1,...,kN
increases or remains constant under unilocal quantum operations.

Proof. The most general objects on which our monotones E are defined are ensembles of
(possibly mixed) states. Consider an ensemble of unnormalized states ρi ; then Ek({ρi}i ) :=∑

i Ek(ρi). To show that this increases under unilocal operations, it suffices to show that
Ek(ρi) does so for each i. We therefore suppress the index i and consider a single mixed input
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state ρ. Let {Am}m be a unilocal set of operations, which we take WLOG to be on system N .
We wish to show that

Ek(ρ) �
∑
m

Ek(Am(ρ)). (17)

Each Am has a Hellwig–Kraus decomposition Ams with s taking a finite number of values, so
that Am(ρ) = ∑

s AmsρA†
ms . By concavity,

∑
ms

Ek(AmsρA†
ms) �

∑
m

Ek

( ∑
s

AmsρA†
ms

)
. (18)

Therefore, we will show monotonicity under sets {Aj }j of ‘one-operator’ unilocal operations,
for which each Aj corresponds to a single operator Aj . For, taking j to be the double index ms

in (18), monotonicity under sets of general unilocal operations will follow from monotonicity
under sets of one-operator unilocal operations and (18). To show monotonicity under one-
operator sets of unilocal operations, let {|ψmax

i 〉}i be a pure-state ensemble for ρ which achieves
the maximum in the convex roof expression

Ek1,...,kN
(ρ) := max

{|ψi 〉}i :
∑

i |ψi 〉〈ψi |=ρ

∑
i

Ek1,...,kN
(|ψi〉). (19)

Under unilocal operations Aj , each with one Hellwig–Kraus operator Aj on the N th system,
we have

ρ → {AjρA
†
j }j =: {ρj }j . (20)

Suppose that �̂i
1, . . . , �̂

i
N achieves the maximum, for the initial state |ψmax

i 〉, in the definition (6)
of Ek. Define

|ψ̃i〉 := �̂i
1 ⊗ �̂i

2 ⊗ · · · �̂i
N−1|ψmax

i 〉. (21)

Then

Ek1,...,kN
(|ψ̃i〉) = max

�i
N

∣∣�i
N |ψ̃i〉

∣∣2 = EkN
(|ψ̃ ′

i 〉) (22)

where |ψ̃ ′
i 〉 is |ψ̃i〉 considered as the state of a bipartite system in which systems 1, . . . , N − 1

are viewed as a single quantum system, tensored with system N . By the definition (21) of |ψ̃i〉
Ek(ρ) =

∑
i

Ek1,...,kN
(|ψ̃i〉). (23)

By (22), this is equal to∑
i

EkN
(|ψ̃ ′

i 〉) �
∑
ij

EkN
(Aj |ψ̃ ′

i 〉) (24)

where the inequality is due to the monotonicity of the bipartite monotones Ek [13]. Inserting
the definition of these bipartite monotones, the right-hand side is∑

ij

max
�

ij

N

∣∣�ij

NAj |ψ̃ ′
i 〉

∣∣2
. (25)

Using the definitions of |ψ̃ ′
i 〉 and |ψ̃i〉 gives∑

ij

max
�

ij

N

∣∣�̂i
1 ⊗ · · · ⊗ �̂i

N−1 ⊗ �
ij

NAj |ψmax
i 〉∣∣2

(26)

which is less than or equal to∑
ij

max
�

ij

1 ,...,�
ij

N

∣∣�ij

1 ⊗ · · · ⊗ �
ij

N−1 ⊗ �
ij

NAj |ψmax
i 〉∣∣2
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(with �ij constrained to have the ranks ki) since we have just widened the domain of
maximization. By the definition of Ek, this is equal to∑

ij

Ek(Aj |ψmax
i 〉) = Ek({Aj |ψmax

i 〉}ij ). (27)

We now note that {Aj |ψmax
i 〉}i (for fixed j ) is an ensemble for ρj , hence by the concavity of

Ek

Ek({Aj |ψmax
i 〉}ij ) � Ek({ρj }j ) (28)

as required. �

The conjunction of proposition 5 and the concavity of Ek gives

Theorem 6. Ek are entanglement monotones.

When analysing particular multipartite states, we should remember that this definition of
monotones gives us not only the monotones explicitly mentioned in definition 6, but also all the
monotones given by the same definition, but with some subsets of the set of systems grouped and
considered as single systems, and definition 6 applied to this ‘coarsegrained’ party structure.
These are also monotones under LOCC with respect to the finegrained party structure, since
operations local with respect to the finegrained structure are also local with respect to the coarser
one. (Some obvious inequalities therefore hold between monotones and the coarse-grainings
of them.) An example of this construction is the frequent practice of grouping the parties into
two disjoint sets, and applying bipartite monotones to the resulting bipartite structure, when
studying multipartite states. Note, however, that while our multipartite monotones include all
such bipartite monotones based on majorization of the reduced density matrix of some set of
parties, they also include, as we will show in section 6, irreducibly multipartite monotones
giving us information not provided by the majorization-based monotones studied by Nielsen
and Vidal.

4. Collective processing and multiplicativity

Suppose we have two multiparty states, |ψX〉 and |χY 〉, on Hilbert spaces X and Y each
composed of subsystems 1, . . . , N held by N different parties. Thus X = X1 ⊗X2 ⊗· · ·⊗XN ,
and similarly for Y , but there is no assumption that Xi and Y i are isomorphic. For the purposes
of multipartite LOCC protocols, party i may operate on his part of both theX and theY systems;
in other words, arbitrary operations by i on Xi � Y i are considered local operations in this
framework4. We will refer to such operations, and their obvious generalization to more than
two states shared by the same set of parties, as collective processing of the states (of |ψX〉 and
|χY 〉, in the two-state case).

The question of collective processing is important for a number of reasons. Firstly it is
known that collective processing is needed, in general, to distill entanglement from quantum
states. Specifically, given a quantum state, one may wish to perform (LOCC) operations on
it so that there is some probability that one of the outcomes of the measurements has more
entanglement than the initial state (of course one cannot increase the average entanglement of
the outcomes). It has been shown, however, [14] that, in general, entanglement distillation is
not possible if one only has one copy of a qubit state, even though with collective processing
of more than one copy of the same state, distillation is possible. Secondly, in order to extract

4 If we have two states ρ1 and ρ2 we will denote their tensor product ρ1 �ρ2; the aim of this notation is to reinforce the
fact that this is not the tensor product of the Hilbert spaces of the parties (for which we will use the usual notation ⊗).
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the maximum possible entanglement from a pure bipartite state (i.e. the local entropy of one
of the parties) one needs collective processing [15].

When using monotones or invariants to investigate collective processing, it is important to
know about the behaviour of the quantities in question under the tensor product � of different
states of the same parties. If the quantities are additive or multiplicative, this makes their
application to collective processing much simpler, as they may be evaluated for the individual
states, and from this one obtains their values for many copies of the same state, or for the
combination of several copies of each of several different types of state.

The monotones Ek1,...,kN
are supermultiplicative in the sense given by the following

proposition.

Proposition 7 (Supermultiplicativity).

Ek1,...,kN
(|ψX〉)El1,...,lN (|χY 〉) � Ek1l1,...,kN lN (|ψX〉 � |χY 〉). (29)

The proof of this proposition is immediate from the definition of these monotones: one
need only note that the product of a rank-ki projector PXi

ki
on Xi and a rank-li projector QYi

li
on

Y i is a rank-kili projector on Xi � Y i , and therefore the value Ek1,...,kN
(|ψX〉)El1,...,lN (|χY 〉)

is achievable in the maximization defining Ek1l1,...,kN lN (|ψX〉 � |χY 〉). It is far from obvious,
however, that the two quantities in the above proposition are equal, i.e. that multiplicativity
holds. It may be that projectors which do not have a product structure with respect to the X�Y

tensor factorization can achieve a higher projection. (Werner and coworkers, however, have
numerically investigated some cases of the maximum modulus-squared inner product with a
pure product (with respect to the party structure) state, in other words, cases of E1,1,...,1, and
have not found violations of multiplicativity [16].)

In some special cases, it is easy to show multiplicativity.

Proposition 8. For monotones Ek1,...,kN
and states |ψ〉 and |χ〉 for which the reduced density

matrix of each state onto the systems with less-than-full-rank ki is maximally mixed, we do
have multiplicativity, i.e. equality in (29).

Proposition 9. When we tensor an entangled state of all parties with a product state |ν〉 of all
parties, the optimal projector may be decomposed asQk1 ⊗· · ·⊗QkN

= |ν〉〈ν|�Pk1 ⊗· · ·⊗PkN
.

This implies that the value of our monotones is unchanged by tensoring with a product pure
state.

This proposition must hold for any entanglement monotone, as the operations of adjoining
or discarding |ν〉 are both LOCC. In the case of our monotones, we can also use proposition 7
and the fact that the monotones are equal to 1 on separable states, plus just the fact that adjoining
|ν〉 is LOCC.

5. Applications of the monotones

It seems likely that for each multipartite Hilbert space (each number of parties N and set of
dimensions d1, . . . , dN ), there exist many fundamentally distinct types of entanglement. This
statement may be taken in various senses. For example, one case in which we might wish to
say that two states have fundamentally different types of entanglement is when neither one
can be transformed into the other with certainty via LOCC. We say they are incommensurable
under deterministic LOCC (DLOCC, for short). If neither one can be transformed into the
other with finite probability (i.e., the parties are not guaranteed to succeed, but there is a finite
probability of success and they know when they have succeeded), this is a stronger sense in
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which the states exhibit fundamentally different types of entanglement: we will say they are
incommensurable under SLOCC (the S is for stochastic). Dür et al [17] define two states to be
equivalent under SLOCC when there is nonzero probability for a transition in both directions
(this is an equivalence relation). (Note, however, that the relation of incommensurability under
SLOCC defined above need not be an equivalence relation; while symmetric, it is not obviously
transitive. Nor, of course, is it the complement of Dür et al’s SLOCC equivalence.) Another
sense, stronger still, is if there is no nonzero asymptotic rate R at which C1 copies of one state
|ψ〉 (|χ〉) can be LOCC-transformed into C2 copies of the other state |χ〉(|ψ〉), in the limit in
which C1, C2 → ∞, C1/C2 → R, and the fidelity of the transformed state to the target state
|χ〉⊗C2 (|ψ〉⊗C1 ) approaches one. The monotones Ek give direct information on the first two
questions, and if their multiplicativity properties discussed in section 4 can be understood, or
at least controlled for some examples as C1, C2 → ∞, then they may yield information on the
third as well.

To this end, one would like to calculate the monotones for interesting multipartite states,
hoping to find examples of pairs of states ranked in the reverse order by two of the Ek. This
implies they are DLOCC-incommensurable. SLOCC may be investigated using the following
observation.

Proposition 10.

prob(|ψ〉 → |χ〉) � 1 − Ek(|ψ〉)
1 − Ek(|χ〉) . (30)

Proof. Suppose |ψ〉 → |χ〉 via LOCC with probability p. Then |ψ〉 goes to some ensemble
ϒ containing the state

√
p|χ〉. Ek(|ψ〉) � Ek(ϒ) � (1 − p) + pEk(|χ〉) (the first inequality

is from the fact that E is a monotone, and the second is from the fact that the largest value
of E for an ensemble containing |χ〉 with probability p occurs where all the other states are
separable). Algebra gives the proposition. �

This is the same argument already used by Vidal for bipartite monotones. Note that 1−Ek

are decreasing entanglement monotones. Also, the RHS of (30) can be greater than 1 for some
monotones and states. This is not a problem, it merely means that the monotone in question
imposes no restriction on SLOCC transformations of the states in question. (Other monotones
may, however.)

Corollary 11. If Ek(|ψ〉) = 1 while Ek(|χ〉) �= 1 for some Ek, then |ψ〉 may not be converted
into |χ〉 via SLOCC.

6. Examples

As an example of our monotones in action, we consider some simple tripartite states known to
have irreducibly tripartite entanglement, the states |W 〉 := 1/

√
3(|001〉+|100〉+|010〉 [17] and

|GHZ〉 := 1/
√

2(|000〉 + |111〉). We compare them to states with only bipartite entanglement,
such as the tensor product of a Bell state of two parties with a pure state for the third party.

• GHZ state: E2,1,1 = E1,2,1 = E1,1,2 = 1/2; E1,1,1 = 1/2;
E2,1,1 (or any permutation) = 1/2.

• Singlet for parties 1 and 2 tensored with a pure state for party 3:
E2,1,1 = E1,2,1 = E1,1,2 = 1/2;
E1,1,1 = 1/2; E1,2,2 = E2,1,2 = 1/2; E2,2,1 = 1.
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Even taken together, the values of E2,1,1 and permutations, and of E1,1,1, do not differentiate
between the GHZ and the singlet. Of course, E2,2,1 does differentiate between these cases.

Thus, in the case of Bell versus GHZ, the only one of our multipartite monotones which
distinguishes the two kinds of state is essentially bipartite in nature. One might worry
that the new multipartite monotones never provide any interesting information about state
transformations which does not stem from bipartite considerations. This worry would be
unjustified, as a comparison of the |GHZ〉 and |W 〉 states shows.

We have:

• |W 〉: E2,1,1 = 1/3; E1,1,1 = 4/9; E2,2,1(or any permutation) = 2/3.

E2,2,1 tells us that a |W 〉 cannot go to a |GHZ〉 via DLOCC. This involves only bipartite
considerations. But E1,1,1 tells us, in addition, that a |GHZ〉 cannot go to a |W 〉. This is not
forbidden by bipartite considerations. So, the multipartite monotones we have defined cannot
all be just monotonic functions of the bipartite ones. Rather, they give us further, irreducibly
multipartite, information about which state transformations are possible via multipartite LOCC.
In fact, proposition 30 lets us use the multipartite monotones to bound the probabilities for
conversion via SLOCC: p � 2/3 (from E2,2,1) for |W 〉 → |GHZ〉, p � 3/4 (from E2,1,1) for
|GHZ〉 → |W〉.

We know from the work of Dür et al [17] that neither of these probabilities can be nonzero,
so the bounds are not tight. So the nondecrease of these monotones, even considered all
together, is not a sufficient condition for multipartite SLOCC. This despite the fact that they
generalize, in a way that does give further irreducibly multipartite constraints on SLOCC, a set
of bipartite monotones whose nonincrease is known to be a necessary and sufficient condition
even for SLOCC.

7. Invariants

In the rest of this paper, we introduce polynomial invariants for simultaneous collective
processing of more than one quantum state of N parties. In order to explain these invariants,
it will be helpful to first recall some information about invariants for processing of single
quantum states.

There has been much written about the situation when N parties share a single quantum
state |ψ〉 and the Hilbert space of each party is a qubit. A useful tool for analysing this case
is invariant theory [2]. Thus it is known that there is an infinite set of polynomial functions
of the state, each of which is invariant under local unitary transformations. If two N -party
states have different values of any invariant polynomial, then they are not transformable into
each other by local unitary transformations. For comparison with what follows it is useful to
give an explicit example here. So consider the case N = 3. A general pure state |ψ〉 may be
written as

|ψ〉 =
2∑

i,j,k=1

ψijk|i〉|j〉|k〉. (31)

It is useful to think of arranging the set of polynomial invariants in order of increasing degree
in the state |ψ〉. Some of the invariants of low degree are

I2 =
2∑

i,j,k=1

ψijkψ
∗
ijk (32)

I
(1)
4 =

2∑
i,j,k,m,n,p=1

ψijkψ
∗
imnψpmnψ

∗
pjk (33)
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I
(2)
4 =

2∑
i,j,k,m,n,p=1

ψjikψ
∗
minψmpnψ

∗
jpk (34)

I
(3)
4 =

2∑
i,j,k,m,n,p=1

ψjkiψ
∗
mniψmnpψ

∗
jkp (35)

I
(4)
4 =

2∑
i,j,k,m,n,p=1

ψijkψ
∗
ijkψmnpψ

∗
mnp (36)

I6 =
2∑

i,j,k,m,n,p=1

ψijkψ
∗
imnψpqnψ

∗
pjsψrmsψ

∗
rqk. (37)

The lower index on the invariant indicates the degree in |ψ〉, the upper index is used to
distinguish between invariants of the same degree. Sums and products of invariants are clearly
also invariant (the set of polynomial invariants forms a ring).

The above invariants have been constructed by contracting each local index with the
invariant tensor δij of U(2), in such a way that a ψ index is always contracted with a ψ∗ index;
e.g. I2 may be written

I2 =
2∑

i1,j1,k1,i2,j2,k2=1

ψi1j1k1ψ
∗
i2j2k2

δi1i2δj1j2δk1k2 . (38)

When an invariant is written this way, we will say it is in simple form. Not all polynomial
invariants can be written in simple form; those which can, we will call simple. Of course, even
simple invariants can also be written in forms which are not simple.

Another interesting invariant is the residual tangle [18]. Its definition is

T := 2

∣∣∣∣
∑

i,j,k,m,n,p,q.i ′,j ′,k′,m′,n′,p′
ψijkψi ′j ′mψnpk′ψn′p′m′εii ′εjj ′εkk′εmm′εnn′εpp′

∣∣∣∣ (39)

where εij is the antisymmetric invariant tensor of SU(2) (the fact that we take the modulus
of the expression means that it is invariant under U(2)). T is not a polynomial in ψ and ψ∗.
However its square is a polynomial, and it may be written as a sum of simple terms involving
the invariant tensor δ. This may be done by using the relation εii ′εjj ′ = δij δi ′j ′ − δij ′δi ′j .
If we pair ε from the ψ terms with ε from the ψ∗ terms (which are absent from within the
modulus in (39), but are introduced—along with twelve new indices and the removal of the
modulus—when (39) is squared), the expression will (when multiplied out) be a sum of simple
invariant terms, as claimed. Explicitly:

T 2 = 4
∑

ψijkψi ′j ′mψnpk′ψn′p′m′ψ∗
IJKψ∗

I ′J ′Mψ∗
NPK ′ψ

∗
N ′P ′M ′

×(δiI δi ′I ′ − δiI ′δi ′I )(δjJ δj ′J ′ − δjJ ′δj ′J )

×(δkKδk′K ′ − δkK ′δk′K)(δmMδm′M ′ − δmM ′δm′M)

×(δnNδn′N ′ − δnN ′δn′N)(δpP δp′P ′ − δpP ′δp′P ). (40)

(Possibly there are other similar expressions for T 2, which cannot be matched with this
one term-by-term by renaming dummy indices, arising through different pairings of ε when
applying the ε–δ identity.)

General theorems from invariant theory imply that any polynomial invariant may be
written, as we have done with T 2, as a sum of simple invariants. Each simple invariant is
a product of equal numbers of ψ and ψ∗ with all the local indices for a given party contracted
(pairing ψ-indices with ψ∗-indices) using the invariant tensor δij ; also any such polynomial is
invariant (see [2] for further details). It is also known how to calculate a generating function (the
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Molien series) for the number of linearly independent invariants of each degree. The simple
invariants will turn out to be particularly interesting when we come to consider collective
processing of more than one state below. Note, however, that the squared tangle is not written
in simple form above. We believe that it cannot be written in simple form, and thus is not
simple.

An alternative way of writing the above invariants which will be useful below is using an
‘index-free’ notation. Let us write |ψ〉〈ψ | as ρ; we also find it helpful now to label the parties
A,B,C. Then the above invariants may be written as

I2 = TrABC ρ (41)

I
(1)
4 = TrBC[TrA ρ]2 (42)

I
(2)
4 = TrAC[TrB ρ]2 (43)

I
(3)
4 = TrAB[TrC ρ]2 (44)

I
(4)
4 = (TrABC ρ)2 (45)

I6 = TrABC[1A ⊗ TrA ρ][1B ⊗ TrB ρ][1C ⊗ TrC ρ]. (46)

In the expressions above TrAB denotes the trace over the Hilbert space for the first and second
parties and the symbol 1A means the 2 × 2 identity operator on the first Hilbert space.

Of course, not all the infinitely many invariants are independent of each other (for example
I
(4)
4 = (I2)

2). The Hilbert basis theorem states that, for any ring of invariants of interest to us,
there exists a finite basis of the ring (i.e. any invariant may be written as a sum of products
of elements of the basis, and the number of elements in this basis is finite). Thus in checking
whether two states are locally equivalent, one only needs to check whether the elements of
basis have equal values when evaluated for the two states. Unfortunately there is no simple
procedure for calculating the basis for any given example. Thus, while the basis is simple to
find for N = 2 parties (in fact, for any dimension of local Hilbert space, not just qubits), and a
basis for the case N = 3 has been reported [19], the basis is not known for more parties, as far
as we are aware. Nonetheless, knowing the invariants of low degree can still be very useful in
applications (see e.g. [20] and below).

8. Collective processing and multiplicative invariants

We now turn to the case that the N parties share not one quantum state but a number C:
{|ψ1〉, |ψ2〉, . . . |ψC〉}, and we increase the types of operation the parties are allowed to do to
include unitary processing of all these copies together. A particularly interesting case is when
all states are copies of a single state, but most of what we will have to say is applicable to
the more general case in which the states are different. We will continue to use the notation
�, introduced in section 4, for the tensor product of different state spaces belonging to the
same set of parties, and of states belonging to these different state spaces. Recall that collective
processing of states refers to the possibility that each party’s local operations may be ‘nonlocal’
with respect to the tensor product structure �: that is, the different states shared by the same
parties may all be processed together, though still locally with respect to the party structure.

In the case of bipartite systems there is a well known function, the local entropy
S(ρ) = − TrB

[
TrA [ρ] log TrA [ρ]

]
which is invariant under collective processing; it is also

additive, namely S(ρ1 � ρ2) = S(ρ1) + S(ρ2). Our aim here is to show that there is a large
class of polynomial functions for multi-party systems which are invariant under collective
unitary transformations, and which are multiplicative (hence their logarithms, when defined,
are additive).
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The most general form of collective processing allows general LOCC transformations
on multiple copies. As a step towards understanding this general case we will discuss what
can be said about processing with collective unitary transformations. To be explicit let us
first consider qubit states and consider pure states of three parties (extensions to more parties
and states of higher-dimensional systems will then follow). The space of states of single
copies is C2 ⊗ C2 ⊗ C2 = C8; the group of local unitary transformations on this space is
U(2) × U(2) × U(2). Thus the Hilbert space of two states is

(C2 � C2) ⊗ (C2 � C2) ⊗ (C2 � C2) = C4 ⊗ C4 ⊗ C4. (47)

We will be interested in properties of the combined state invariant under U(4)×U(4)×U(4).
The sort of question we would like to address is as follows. Kempe [20] has produced

an interesting example of two 3-qubit states which are not locally equivalent although they
have equal values of their bipartite invariants (or equivalently their local entropies). The non-
equivalence was demonstrated by calculating the value of I6. The two states and the values of
the invariants are

|φ1〉 = 1/
√

37(2
√

3|000〉 − 5|111〉)
|φ2〉 = 1/

√
37(4

√
2|000〉 − 5| + ++〉)

I
(j)

4 (|φ1〉) = I
(j)

4 (|φ2〉) = 769/1369 (j = 1, 2, 3)

I6(|φ1〉) ≈ 0.343 �= I6(|φ2〉) ≈ 0.242.

(48)

Here |+〉 := (|0〉 + |1〉)/√2. Imagine now that one has many copies of |φ1〉; can they
be transformed into many copies of |φ2〉 by collectively processing them using unitary
transformations? The point is that the group we are going to allow to act is much larger
in the collective case than in the case of one copy (the group of local unitary actions in the case
of one copy is U(2) × U(2) × U(2); in the case of C copies it is U(2C) × U(2C) × U(2C)).
In particular, consider starting with C copies of |φ1〉; the state of these C copies lies inside
C2C ⊗ C2C ⊗ C2C

in a particular way. Using collective unitaries we can transform the state
(|φ1〉)⊗C into other states, some of which may be written as the tensor power of some other
state but the way in which the new tensor structure of each of the local Hilbert spaces lies
inside C2C

may be quite different from the way the Hilbert space was initially decomposed as
a C-fold tensor product. The question is then: does the extra freedom collective processing
allows enable us to transform multiple copies of |φ1〉 into multiple copies of |φ2〉?

We now present an infinite family of polynomials which are invariant under collective
processing of any number of qubits. The easiest way to describe the family is by an example.
Consider then a particular homogeneous polynomial of a single state which is invariant under
U(2) × U(2) × U(2), namely

I
(1)
4 = TrB1C1

[
TrA1 ρ

]2
. (49)

Here TrA1 denotes the trace of the operator over the two-dimensional Hilbert space A1, etc
(we will shortly be taking the tensor product of more than one Hilbert space for each party);
as before we use ρ to denote the density matrix associated with the pure state |ψ〉〈ψ |. This
invariant may be easily extended to an invariant under collective processing of two states.
Denote by A the four-dimensional Hilbert space of the first party, etc; clearly

TrBC [TrA ρ1 � ρ2]2 (50)

is invariant under local actions of U(4) by each party, since each trace is invariant. Of
course (50) is just one of the local invariants of states of three parties, each having a four-
level system (see below). Moreover for any operator X on C4, we may write

TrA(X) = TrA1

(
TrA2 (X)

)
(51)
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where HA = HA1 � HA2 is the local Hilbert space of party A; A1 and A2 label any
decomposition of the local Hilbert space HA = C4 as a tensor product of two copies of
C2. If we take the decomposition corresponding to |ψ1〉 and |ψ2〉 we see that

TrBC[TrA ρ]2 = TrBC[TrA1 TrA2 ρ1 � ρ2]2

= TrBC[TrA1 ρ1 � TrA2 ρ2]2

= TrBC[TrA1 ρ1]2 � [TrA2 ρ2]2

= TrB1C1 [TrA1 ρ1]2 TrB2C2 [TrA2 ρ2]2. (52)

We have used the facts that (X � Y )2 = X2 � Y 2 and TrA1A2(X � Y ) = TrA1(X) TrA2(Y ).
We have thus shown how to extend the original invariant (49) to one which is invariant

under collective processing and also multiplicative (so that its logarithm is additive). We note
that it was important the invariant is simple; a sum of invariants will not be multiplicative, in
general.

An alternative way of seeing why an object like

TrBC [TrA |ψ〉〈ψ |]2 (53)

is invariant under local unitaries and multiplicative under tensor products is to use index
notation. We write the invariant as

4∑
µ,ν,ρ,σ,τ,η=1

ψµνρψ
∗
µστψηστψ

∗
ηνρ

=
4∑
1

ψµ1ν1ρ1ψ
∗
µ2σ1τ1

ψη1σ2τ2ψ
∗
η2ν2ρ2

δµ1µ2δν1ν2δρ1ρ2δσ1σ2δτ1τ2δη1η2 (54)

where ψµνρ , µ, ν, ρ = 1 . . . 4 are the components of the state |ψ〉 = |ψ1〉 � |ψ2〉, and δµ1µ2

is the invariant tensor for U(4). Under the decomposition of each local Hilbert space as two
copies of C2, each index µ, say, becomes a composite index aα; a, α = 1, 2. The invariant
tensor δ becomes

δµ1µ2 = δa1a2δα1α2 . (55)

The invariance of the expression (53) follows from the fact that δ is an invariant tensor for
U(4). A little algebra reproduces the result that (53) is multiplicative.

The latter method of proof is useful in cases where it is not easy to see how to write a
given invariant in an ‘index-free’ way using traces.

While we have illustrated our point by examples, it should now be clear that any simple
polynomial invariant of qubits may be extended to a multiplicative invariant for collective
unitary processing of any number of states |ψ1〉, |ψ2〉, . . . |ψC〉. (Note, however, that if, as we
believe, the squared tangle is not simple, this argument does not apply to it.)

The multiplicativity of these invariants, and in particular of I6, allows us to understand
convertibility via collective unitaries for the states Kempe considered. There are no positive
integers C1, C2 such that C1 copies of |φ1〉 can be converted to C2 copies of |φ2〉. The
nontrivial but effectively bipartite invariants I

(j)

4 (j = 1, . . . , 3), which are all equal, impose
the requirement C1 = C2 in order to maintain equality of the invariants for |φ1〉⊗C1 and |φ2〉⊗C2 .
Thus bipartite considerations do not forbid this exact conversion, at a 1 : 1 ratio. But when
C1 = C2, the invariant I6 will differ for these product states (taking values of approximately
0.343C1 and 0.242C1 , respectively) implying that exact unitary conversion, even collectively,
is not possible at any ratio. Most pairs of states will be similarly constrained.

As we mentioned above, the invariants we have been thinking of as multiplicative invariants
under collective processing of qubit states are amongst the invariants which arise when
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considering local unitary actions on a single copy of an N -party, locally d-level system. The
Hilbert space in this latter case is �NCd and the group of local unitary transformations is
U(d)N . In fact, the complete set of local unitary invariants are formed exactly as for qubits:
one uses the invariant tensor δRS , R, S = 1 . . . d to contract the local indices. General theorems
from invariant theory tell us that all polynomial invariants are sums of terms of this form (in fact
exactly as for qubits, only the indices run over more values). Thus any polynomial invariant
for this case is a polynomial invariant for collective processing of states (where the product
of the dimensions of the local Hilbert spaces is d). While sums and products of invariants
are invariant, only simple polynomials are multiplicative when thought of as invariants of
collective processing of smaller systems.

We now turn to a few remarks about local invariants for density matrices. Reference [21]
used a particularly convenient representation of density matrices of qubits, the Bloch
decomposition. For example a two-qubit density matrix can be written as

ρ = 1
4

(
12 ⊗ 12 + αiσi ⊗ 12 + βj12 ⊗ σj + Rijσi ⊗ σj

)
(56)

where i, j = 1 . . . 3, σi are the Pauli matrices, and αi, βj and Rij are real. The action of local
unitary transformations becomes the action of SO(3) × SO(3) on the parameters α, β and R

and this allows us to write down invariants and also find simple generating sets for the ring of
invariants (see [21] for details). A density matrix of d-level systems can be written in a similar
form to (56) with the Pauli matrices replaced by analogous d × d matrices, and the indices
i, j now running from 1 . . . d2 − 1. However it is significant that now the action of the local
unitary group on the density matrix induces the action of a subgroup of the orthogonal group
on the parameters α, β and R. Thus the full set of invariants is much more complicated when
expressed as functions of these parameters. Therefore it is not easy to see how to construct
invariants for collective processing using this parametrization for density matrices.

A more fruitful approach is to write invariants in terms of local traces, as was done for
pure states above. Indeed, any of the multiplicative invariants we described for pure states
are also invariants for density matrices (in the ‘index free’ form, for example, it is easy to see
that any invariant for pure states becomes one for mixed states by simply replacing |ψ〉〈ψ |
by a general density matrix ρ). However, there are other invariants, of determinant type, of
general density matrices. These arise since the local action on density matrices is essentially
an action of the special unitary group rather than full unitary group; the special unitary group
has antisymmetric invariant tensors. We will return to the question of the ring of invariants for
density matrices in a future publication.
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Appendix. Proof of proposition 4

Consider a pure bipartite state written in a Schmidt decomposition with real coefficients,

|ψAB〉 =
∑

i

λ
1/2
i |iA〉|iB〉 (57)

so that |iA〉 and |iB〉 are orthonormal bases. We may write this as (I ⊗ ρ1/2)|6〉, where
|6〉 := ∑

i |iA〉|iB〉, an unnormalized vector (note that |6〉 depends on a choice of local bases
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|iA〉 for A and |iB〉 for B). Thus

〈ψAB |(R ⊗ P)|ψAB〉
= 〈6|(I ⊗ ρ1/2)(I ⊗ P)(R ⊗ I )(I ⊗ ρ1/2)|6〉
= 〈6|(I ⊗ ρ1/2)(I ⊗ P)(I ⊗ ρ1/2)(R ⊗ I )|6〉
= 〈6|(I ⊗ ρ1/2)(I ⊗ P)(I ⊗ ρ1/2)(I ⊗ RT )|6〉
= 〈6|(I ⊗ ρ1/2Pρ1/2Q)|6〉. (58)

For the second equality, we just commuted operators. The third equality uses the identity
(valid for any linear operator X) (X ⊗ I )|6〉 = (I ⊗ XT )|6〉 where the transpose is done in
the local basis |iA〉 used to define |6〉, and the implicit isomorphism between A and B is the
one that identifies these local bases |iA〉 and |iB〉 with each other (for a proof, cf e.g. [22]). The
last equality just defines Q := RT and uses elementary tensor product manipulations. Here,
R,P are projectors on spaces A and B respectively, with ranks kA and kB ; Q is a projector of
rank kA, by the easily checked fact that the transpose of a projector is a projector of the same
rank. Maximizing over all projectors of these ranks is the same as holding P,Q fixed and
maximizing, over all unitaries U,V on A,B respectively, in the expression:

〈6|(I ⊗ ρ1/2VPV †ρ1/2UQU †)|6〉. (59)

Now, this is equal to

tr ρ1/2VPV †ρ1/2UQU † (60)

and,

max
U,V

| tr ρ1/2VPV †ρ1/2UQU †| � max
U,V,W,Y

| tr ρ1/2VPWρ1/2UQY |. (61)

The latter maximization is a special case of a general schema:

max
U,V,W,Y ...Z

| tr AUBVCW · · ·GZ| =
∑
j

σj (A)σj (B)σj (C) · · · σj (G) (62)

which holds for any finite set of linear operators A,B,C, . . . ,G and unitaries U,V,W, . . . , Z.
Here σj (X) are the decreasingly ordered singular values of X (eigenvalues of |X| :=

√
XX†,

which are also the eigenvalues of
√

X†X although this is not generally equal to |X|).
For the case of two operators and two unitaries, (62) was shown by von Neumann [23].

In the general case, it follows from the facts that

max
unitary U

| tr AU | =
∑
j

σj (A) (63)

(cf [11, 22] theorem 7.4.9, p 432),

(η �w µ) → λ · η �w λ · µ (64)

and

σ(AB) �w σ(A) · σ(B) (65)

(cf [3], equation IV.21, p 94). Here σ(A) stands for the vector of the decreasingly ordered
singular values of A, and �w means ‘is weakly majorized by’, i.e. for all k the sum of the first
k components of the RHS vector is greater than or equal to the sum of the first k components
of the LHS. λ,µ and η are also assumed to be vectors with decreasingly ordered components,
none of which are negative, and notation such as λ · η does not stand for the usual dot product,
but rather for the componentwise product of two vectors, whose value is another such vector.
(Explicitly, (λ · η)j = λjηj .)
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The proof that the LHS of (62) is less than or equal to the RHS proceeds inductively as
follows. Firstly,

max
U,V,W,Y ...Z

| tr AUBVCW · · ·GZ| =
∑
j

σj (AUBVC . . .G) (66)

by (63). Then use of (65) gives∑
j

σj (AUBVC . . .G) �
∑
j

σj (AUBVC . . . F )σj (G). (67)

Now σ(A . . . F ) �w σ(AU . . . E)σ (F ) by (65), and thus

σ(A . . . F ) · σ(G) �w σ(A . . . F ) · σ(F ) · σ(G). (68)

Repeating this step shows that

σ(A . . .G) �w σ(A) · σ(B) · · · σ(G) (69)

and therefore that

max
U,V,W,Y ...Z

| tr AUBVCW · · ·GZ| =
∑
j

σj (AUBVC . . .G) �
∑
j

σj (A) · · · σj (G). (70)

Finally we note that appropriate choice of the unitaries U,V, . . . , Z in (62) allows this
equality to be reached. Specifically, by the singular value decomposition they may be chosen
so as to transform, say, A to |A| and each of B,C,D . . . to U |B|U †, V |C|V †, W |D|W †, each
of which commutes with |A| and has its ordered eigenvalues associated with their common
eigenvectors in the same order as |A|.

Applying this result to the case at hand, we note that the unitary freedoms on the LHS
of (61) are sufficient to achieve this maximum for A = ρ1/2, B = P,C = ρ1/2,D = Q.
Consequently, the maximal value of (61), which is EkA,kB

(|ψAB〉), will be the sum of the
largest min(kA, kB) eigenvalues of ρ.
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